かけ算の順序の昔話

算数教育について気楽に書いていきます。

2×3km,4×3通り

2×3=6であることは誰も不思議には思わないでしょう.それは掛け算の定義が2×3=2+2+2だからです.つまり3倍するとはおなじものを3つ足し合わせることなのです.より一般に自然数による掛け算の定義は
  m×n=m+…+m,mのn個の和
であり,特に1×1=1になります.しかし掛け算をこのように定義する理由はなんでしょうか? つまり,×にはどんな意味があるのでしょうか? 例を考えてみましょう.毎日2kmのジョギングをする人が,3日間で走る距離は2km+2km+2km=6kmです.これを2×3kmと表わしているのです.つまり,2×3とは2+2+2を簡便に表わすための記法といってもよいでしょう.このような具体的な例では,掛け算の定義には何の問題も起こりません.
(『わかっているようでわからない数と図形と論理の話 (学術選書)』p.17)

累加によって自然数のかけ算を定義すること,それによって「2×3は2+2+2」となることには,異論ありません.
しかし「2×3km」には,しばらく目を止めて,考えてしまいました.
累加によるのなら,「2km×3」と書きたいところです.すると「2km×3=2km+2km+2km」となります.
そうして,違和感の正体がわかりました.「2×3km」は,「(2×3)km」と構文解析をすればいいのですね.「2×(3km)」ではなく.


この種のかけ算の式は,教科書にもあります.

学校図書小6上89頁」とのこと.あおいさんの吹き出しを,書き出します.

1番目は4人のうちの1人を決めるので,
4通りの決め方があるね。
2番目は,その1人に対して
3通りの決め方があるね。
ということは,2番目までは
  4×3通り
あるんだね。

ここの「4×3通り」も,「(4×3)通り」と読むことができます.「4×(3通り)」とするのは,発言の流れから,無理があります.
ただし,「2×3km」と「4×3通り」には,意味上の違いがあります.前者は,「2km×3日間」あるいは「2km/日×3日」と考える*1ことができるのに対し,後者について「4通り×3通り」とできるとしても,パー書きの量で表すのが困難です.
これらの意味上の違いは,Greerの分類に当てはめると,もっと明確になります.「毎日2km,3日間」は同等の量(Equal measures)なのに対し,「2番目までは4×3通り」のほうは,デカルト積(Cartesian product)の一例となります.
「2×3km」と「4×3通り」を統一の枠組で,そして小学校の学習事項をもとに理解するには,「伴って変わる二つの数量の関係」を使うのがよさそうです.2行の表をつくって,どれだけ増えるかを見ていけばいいのです.これはVergnaudの「スカラー関係に基づく乗法」と密接な関係があります*2


当ブログを設置したきっかけの一つについてもリンク:

*1:流れとしては逆で,「毎日2km,3日間」を「2km×3日間」あるいは「2km/日×3日」とした上で,「(2×3)km」と持っていきます.

*2:「4×3通り」について,“何番まで”と“何通りあるか”の関係は,比例の関係ではありません.それでも,2行の表をつくることはできます.

広告を非表示にする